Серии IKS-6728/IKS-6726

Руководство пользователя

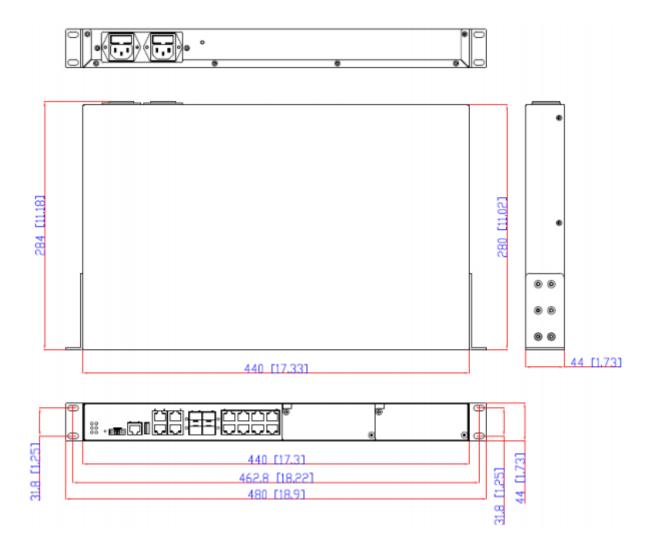
Второе издание, октябрь 2012

MOXA Networking Co., Ltd. Тел.: +886-2-2910-1230 Факс: +886-2-2910-1231 www.moxa.com

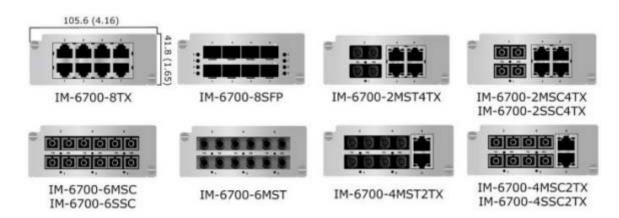
Официальный дистрибьютор в РоссииООО «Ниеншанц-Автоматика»www.nnz-ipc.ruwww.moxa.rusales@moxa.rusupport@moxa.ru

Комплект поставки

Промышленные стоечные коммутаторы серий IKS-6728/IKS-6726 поставляются в следующей комплектации. Если какой-либо из этих элементов отсутствует или поврежден, пожалуйста, обратитесь к Вашему торговому представителю.


- Коммутатор серии IKS-6728 или IKS-6726
- Кабель консольного порта RJ45-в-DB9
- Защитные крышки для неиспользуемых портов
- 2 комплекта креплений для монтажа в стойку
- Документация и ПО на CD
- Руководство пользователя
- Руководство пользователя и SNMP MIB-файл на CD
- Гарантийный талон

Схемы панелей



- 1. Название модели
- 2. Светодиодные индикаторы состояния
- 3. Кнопка сброса к заводским настройкам
- 4. Последовательный консольный порт
- 5. Терминальный блок для выхода реле
- 6. USB-порт
- 7. Светодиодные индикаторы состояния портов 100/1000Base SFP
- 8. Combo-порты 10/100/1000BaseT(X) или 100/1000Base SFP
- 9. Порты 10/100BaseT(X)
- 10. Интерфейсный модуль Fast Ethernet
- 11. Разъемы для входов питания переменного тока
- 12. Разъемы для входов питания постоянного тока
- 13. Винт для заземления

Размеры (в мм)

Интерфейсные модули Fast Ethernet (серия IM-6700)

Заземление промышленного стоечного коммутатора Моха

Заземление и правильная электропроводка помогают снизить воздействие электромагнитных помех (EMI). Перед подключением устройства проведите заземляющее соединение между винтом заземления и заземленной поверхностью.

Подключение входов питания

В зависимости от модификации, коммутаторы серии IKS-6726/6728 поддерживают два типа источников питания: 110/220 В переменного тока и 24/48 В постоянного тока.

Вход питания АС

Подключение электропитания PWR1 (источник питания 1) и PWR2 (источник питания 2) осуществляется на задней стороне коммутатора (см. рисунок ниже). Используйте только стандартный кабель питания с разъемом IEC C13, совместимым со входом переменного тока.

Клеммы питания DC

Подключение электропитания к PWR1 (источник питания 1) и PWR2 (источник питания 2) осуществляется на задней стороне коммутатора (см. рисунок ниже).

ШАГ 1: Вставьте отрицательный/положительный провода постоянного тока в клеммы V-/V+ соответственно.

ШАГ 2: Для закрепления проводов затяните маленькой плоской отверткой винты, расположенные в передней части терминального блока.

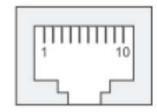
ШАГ 3: Установите пластиковый клеммник в штырьковый разъем.

Подключение контакта реле

Каждый коммутатор серий IKS-6726/6728 имеет один релейных выход.

ОШИБКА:

Контакт реле на 2-контактном терминальном блоке используются для сигнализации о событии, определяемом пользователем. Два провода, присоединенные к контакту, размыкаются, когда происходит заданное пользователем событие. Если такое событие не происходит, цепь остается замкнутой.


Подключение по RS-232

Коммутаторы Моха серий IKS-6726/6728 имеют один консольный порт (10-контактный RJ-45), расположенный на передней панели. Для подключения консольного порта к СОМ-порту компьютера используйте кабель RJ45--DB9 или RJ45-DB25. Вы можете использовать консольную терминальную программу, такую как утилита для настройки коммутаторов IKS-6726/6728 – Moxa PComm Terminal Emulator.

Назначение контактов для 10-контактного порта RJ45

Контакт	Описание
1	-
2	DSR
3	-
4	GND
5	TxD

Контакт	Описание
6	RxD
7	GND
8	-
9	DTR
10	-

Кнопка сброса

Нажмите с помощью острого предмета, например, скрепки или зубочистки, и удерживайте кнопку сброса в течение пяти секунд для того, чтобы установить заводские настройки по умолчанию. После этого примерно раз в секунду начнет мигать светодиод STATE. Продолжайте удерживать кнопку RESET до тех пор, пока STATE не начнет мигать быстрее; это указывает на то, что кнопка была зажата в течение пяти секунд, и Вы можете отпустить ее.

Примечание: Не выключайте коммутатор во время загрузки настроек по умолчанию.

Светодиодные индикаторы

На передней панели коммутаторов IKS расположено несколько светодиодных индикаторов. Назначение каждого индикатора описано ниже.

Индикатор	Цвет	Состояние	Описание
Индикаторы си	стемы		
STATE	Зеленый	Включен	Система прошла тест самодиагностики при начальной загрузке и готова к работе.
		Мигает	Система проходит тест самодиагностики.
			Мигает непрерывно при нажатии кнопки RESET в
			течение 5 секунд, во время сброса к заводским
			настройкам.
	Красный	Включен	Система не прошла тест самодиагностики при начальной загрузке.
PWR1	Оранжевый	Включен	Питание подается на вход PWR1.
		Выключен	Питание не подается на вход PWR1.
PWR2	Оранжевый	Включен	Питание подается на вход PWR2.
		Выключен	Питание не подается на вход PWR2.
FAULT	Красный	Включен	Система вышла из строя или находится в состоянии
			быстрой проверки.
		Выключен	Система работает в обычном режиме.
MSTR/HEAD	Зеленый	Включен	Коммутатор IKS-6726/6728 является «мастером
			кольца» (Ring Master) сети Turbo Ring, либо «головой
			цепи» (Chain Head) сети Turbo Chain.
		Мигает	Коммутатор IKS-6726/6728 является «мастером
			кольца» Turbo Ring, и произошел обрыв сети Turbo
			Ring; либо коммутатор IKS-6726/6728 является
			«головой цепи» Turbo Chain, и произошел обрыв
			Turbo Chain.
		Выключен	Коммутатор IKS-6726/6728 не является ни Ring Master,
			ни Chain Head.
CPRL/TAIL	Зеленый	Включен	Включена функция Ring Coupling в сети Turbo Ring, либо коммутатор является «хвостом цепи» (Chain Tail)
			сети Turbo Chain.
		Мигает	Произошел обрыв сети Turbo Chain.
		Выключен	Функция Ring Coupling в сети Turbo Ring отключена,
			либо коммутатор не является «хвостом цепи» (Chain
			Tail) сети Turbo Chain.
Индикаторы по	ртов		
10/100M	3еленый	Включен	Соединение соответствующего порта активно.
или		Мигает	Идет передача данных соответствующего порта.
10/100/		Выключен	Соединение соответствующего порта неактивно.
1000M			
(порты ТР)			
100/1000M	3еленый	Включен	Включена функция Ring Coupling в сети Turbo Ring,
	1	1	либо коммутатор является «хвостом цепи» (Chain Tail)

			сети Turbo Chain.		
		Мигает	Произошел обрыв сети Turbo Chain.		
		Выключен	Функция Ring Coupling в сети Turbo Ring отключена, либо коммутатор не является «хвостом цепи» (Chain Tail) сети Turbo Chain.		
	Оранжевый	Включен	Соединение оптоволоконного порта 100 Мбит/с активно.		
		Мигает	Передача данных идет со скоростью 100 Мбит/с.		
		Выключен	Соединение оптоволоконного порта 100 Мбит/с неактивно.		
100M	Зеленый	Включен	Соединение соответствующего порта активно.		
(оптоволокно)		Мигает	Соответствующий порт передает данные.		
		Выключен	Соединение соответствующего порта неактивно.		

Характеристики коммутатора

Используемые технологии	
Стандарты	IEEE 802.3 for 10BaseT
	IEEE 802.3u for 100BaseT(X) and 100BaseFX
	IEEE 802.3ab for 1000BaseT(X)
	IEEE 802.3z for 1000BaseX
	IEEE 802.3x for Flow Control
	IEEE 802.1D-2004 for Spanning Tree Protocol
	IEEE 802.1w for Rapid STP
	IEEE 802.1s for Multiple Spanning Tree Protocol
	IEEE 802.1Q for VLAN Tagging
	IEEE 802.1p for Class of Service
	IEEE 802.1X for Authentication
	IEEE 802.3ad for Port Trunk with LACP
Протоколы	IGMP v1/v2, GMRP, GVRP, SNMPv1/v2c/v3, DHCP
	Server/Client, BootP, TFTP, SNTP, SMTP, RARP, RMON,
	HTTP, HTTPS, Telnet, SSH, Syslog, DHCP Option
	66/67/82, EtherNet/IP, Modbus/TCP, LLDP,
	IEEE 1588 PTP V2, IPv6, NTP Server/Client
MIB	MIB-II, Ethernet-like MIB, P-BRIDGE MIB,
	Q-BRIDGE MIB, Bridge MIB, RSTP MIB, RMON MIB
	Group 1, 2, 3, 9
Управление потоком	IEEE 802.3x flow control, back pressure flow control
Интерфейс	
Fast Ethernet	8 портов 10/100Base T(X)
	2 программируемых слота для любых 8-/6-портовых
	интерфейсных модулей с портами 10/100BaseT(X),
	100BaseFX (разъем SC/ST) или 100Base SFP
Gigabit Ethernet	2-/4-портовые модули 10/100/1000BaseT(X) или
	100/1000Base SFP
Последовательный порт	RS-232 (разъем RJ45)
Светодиодные индикаторы	STATE, PWR1, PWR2, FAULT, MSTR/HEAD, CPLR/TAIL
Аварийная сигнализация	Один релейный вход с нагрузочной способностью 3
	А при 30 В постоянного тока или 3 А при 240 В
	переменного тока
Питание	
Входное напряжение	24 В пост. тока (18 ~ 36 В) или 48 В пост. тока (36 ~ 72
	В), или 110/220 В перем. тока (85 ~ 264 В перем.)
Входной ток	Макс. 0.42 А при 24 В пост. тока
(без установленных модулей серии IM-6700)	Макс. 0.22 А при 48 В пост. тока
	Макс. 0.32/0.16 А при 110/220 В перем. тока
Защита от перенапряжения	Есть

Защита от неправильной полярности	Есть
Механические особенности	
Корпус	Защита — IP30
Размеры	440 x 44 x 280
Bec	4100 г
Монтаж	В стойку 19"
Окружающая среда	
Рабочая температура	-40 ~ 75°C
Температура хранения	-40 ~ 85°C
Относительная влажность	5~95
Сертификаты	
Безопасность	UL 60950-1, EN 60950-1
EMI (электромагнитная совместимость)	FCC Part 15 Subpart B Class A, EN 55022 Class A
Применение на железной дороге	EN50121-4
Гарантия	
Гарантийный период	5 лет
Подробнее	www.moxa.com/warranty

Инструкции по установке в стойку

- 1. Рабочая температура: Температура в стойке может быть намного выше комнатной в том случае, если в нее установлены сразу несколько устройств или если она закрыта. В таких случаях следует рассмотреть возможность установки оборудования в среде, совместимой с максимальной рабочей температурой, указанной изготовителем.
- 2. **Недостаточная вентиляция**: Монтаж оборудования в стойку следует выполнять таким образом, чтобы объем воздушного потока, необходимый для безопасной эксплуатации, соответствовал требованиям.
- 3. **Механическая нагрузка**: Монтаж оборудования в стойку должен учитывать опасность последствий неравномерной механической нагрузки.
- 4. **Перенапряжение**: Следует учитывать также и подключение оборудования к цепи питания, так как перегрузка цепей может навредить защите и проводке Вашей цепи. Для решения этой проблемы необходимо использовать специальные таблички для оборудования.
- 5. **Надежное заземление**: При установке оборудования в стойку нужно учитывать надежность заземления. Особое внимание нужно уделить непрямому подключению к распределительному щиту (например, при использовании удлинителей).

Участки с ограниченным доступом

- Данное оборудование предназначено для использования в зонах с ограниченным доступом, например, в компьютерных залах с доступом, ограниченным службой безопасности или пользователями, проинструктированными о том, что металлический корпус устройств нагревается настолько, что защита необходима не только в момент прикосновения. Доступ к оборудованию должен быть обеспечен только с помощью ключа или через систему персональной идентификации.
- Открытые металлически части данного оборудования очень горячие! Прежде, чем дотронутся до него, необходимо принять специальные меры безопасности для того, чтобы защитить свое тело и руки от серьезных травм.

Характеристики модулей серии ІМ-6700

Интерфейс	
Fast Ethernet	IM-6700-8TX: 10/100BaseT(X)
	IM-6700-8SFP: 100Base SFP
	IM-6700-2MSC4TX, -2SSC4TX, -4MSC2TX, -6MSC, -6SSC:
	100BaseFX (разъем SC)
	IM-6700-2MST4TX, -4MST2TX, -6MST: 100BaseFX
	(разъем ST)

Светодиодные индикаторы	10/100 для порта «витая пара» или 100М для	
	оптоволоконного порта	
Питание		
Потребление тока	IM-6700-8ТХ: 1.43 Вт	
	IM-6700-8SFP: 9.95 BT	
	IM-6700-6MSC, -6MST, -6SSC: 8.20 Вт	
	IM-6700-4MSC2TX, -4MST2TX: 5.72 Вт	
	IM-6700-2MSC4TX, -2MST4TX, -2SSC4TX: 3.45 Bt	
Механические особенности		
Bec	IM-6700-8TX: 225 r	
	IM-6700-8SFP: 295 г	
	IM-6700-6MSC, -6MST, -6SSC: 390 г	
	IM-6700-4MSC2TX, -4MST2TX, -4SSC2TX: 270 г	
	IM-6700-2MSC4TX, -2MST4TX, -2SSC4TX: 270 г	
Монтаж	В коммутатор	

Интерфейс портов

интерфеис портов							
		Интерфейс портов					
840-00-		100BaseFX					
Модель	10/100BaseT(X)	Многомод,	Многомод,	Одномод,	100BaseSFP		
		разъем SC	разъем ST	разъем SC			
IM-6700-8TX	8	-	-	-	-		
IM-6700-8SFP	-	-	-	-	8		
IM-6700-6MSC	-	6	-	-	-		
IM-6700-6MST	-	-	6	-	-		
IM-6700-6SSC	-	-	-	6	-		
IM-6700-4MSC2TX	2	4	-	-	-		
IM-6700-4MST2TX	2	-	4	-	-		
IM-6700-4SSC2TX	2	-	-	4	-		
IM-6700-2MSC4TX	4	2	-	-	-		
IM-6700-2MST4TX	4	-	2	-	-		
IM-6700-2SSC4TX	4	-	-	2	-		

Характеристики оптоволоконных портов		
	Многомодовое	Одномодовое
Длина волны, нм	1300	1310
Мощность передатчика, дБм	-20	-5
Чувствительность приемника, дБм	-32	-34
Допустимые потери в канале связи, дБм	12	29
Тип оптоволоконного кабеля	50/125 мкм, 62.5/125 мкм	9/125 мкм
Дальность передачи	до 4 км (кабель 62.5/125 мкм), до 5 км (кабель 50/125 мкм)	до 40 км (кабель 9/125 мкм)
Насыщение приемника, дБм	-6	-3

Характеристики SFP-модулей

Наименование SFP-модуля	Тип интерфейса, характеристики
SFP-1GEZXLC	1000Base-ZX, разъем LC, 110 км, рабочая температура 0~60°C
SFP-1FEMLC-T	100Base-FX multi-mode, разъем LC, 4 км, рабочая температура -40~85°C
SFP-1FESLC-T	100Base-FX single-mode, разъем LC, 40 км, рабочая температура -40~85°C
SFP-1FELLC-T	100Base-FX single-mode, разъем LC, 80 км, рабочая температура -40~85°C
SFP-1GLHLC	1000Base-LH, разъем LC, 30 км, рабочая температура 0~60°C
SFP-1GLHLC-T	1000Base-LH, разъем LC, 30 км, рабочая температура -40~85°C
SFP-1GSXLC	1000Base-SX, разъем LC, 500 м
SFP-1GLSXLC	1000Base-LSX, разъем LC, 2 км
SFP-1GLXLC	1000Base-LX, разъем LC, 10 км
SFP-1GLHXLC	1000Base-LHX, разъем LC, 40 км

1000Base-ZX, разъем LC, 80 км
1000BaseSX, разъем LC, 500 м, рабочая температура -20~75°C
1000Base-LSX, разъем LC, 2 км, рабочая температура -40~85°C
1000Base-LX, разъем LC, 10 км, рабочая температура -40~85°C
1000Base-LHX, разъем LC, 40 км, рабочая температура -40~85°C
1000Base-ZX, разъем LC, 80 км, рабочая температура -40~85°C
Модуль WDM-типа, разъем LC, 10 км, Тх 1310 нм, Rx 1550 нм
Модуль WDM-типа, разъем LC, 10 км, Тх 1550 нм, Rx 1310 нм
Модуль WDM-типа, разъем LC, 20 км, Тх 1310 нм, Rx 1550 нм
Модуль WDM-типа, разъем LC, 20 км, Тх 1550 нм, Rx 1310 нм
Модуль WDM-типа, разъем LC, 40 км, Тх 1310 нм, Rx 1550 нм
Модуль WDM-типа, разъем LC, 40 км, Тх 1550 нм, Rx 1310 нм
Модуль WDM-типа, разъем LC, 10 км, Тх 1310 нм, Rx 1550 нм, рабочая температура -40~85°C
Модуль WDM-типа, разъем LC, 10 км, Тх 1550 нм, Rx 1310 нм, рабочая температура -40~85°C
Модуль WDM-типа, разъем LC, 20 км, Тх 1310 нм, Rx 1550 нм, рабочая температура -40~85°C
Модуль WDM-типа, разъем LC, 20 км, Тх 1550 нм, Rx 1310 нм, рабочая температура -40~85°C
Модуль WDM-типа, разъем LC, 40 км, Тх 1310 нм, Rx 1550 нм, рабочая температура -40~85°C
Модуль WDM-типа, разъем LC, 40 км, Тх 1550 нм, Rx 1310 нм, рабочая температура -40~85°C

Оптоволокно— 1000BaseSX/LX/LHX/ZX

	SX	LSX	LX	LH
Длина волны, нм	850	1310	1310	1310
Мощность	-9.5	-9	-9.5	-8
передатчика, дБм				
Чувствительность	-18	-19	-20	-23
приемника, дБм				
Допустимые потери в	8.5	10	10.5	15
канале связи, дБм				
Дальность передачи	550 м(a)	2 км(b)	10 км(с)	30 км(с)
Насыщение	0	-3	-3	-3
приемника, дБм				

- а. Кабель [50/125 нм, 400 МГц*км] или кабель [62,5/125 нм, 500 МГц*км]
- b. Кабель [62,5/125 нм, 750 МГц*км]
- с. Кабель [9/125 нм]

	LHX	ZX	EZX
Длина волны, нм	1310	1550	1550
Мощность	-4	0	0
передатчика, дБм			
Чувствительность	-24	-24	-30
приемника, дБм			
Допустимые потери в	20	24	30
канале связи, дБм			
Дальность передачи	40 км(с)	80 km(c)	110 км(с)
Насыщение	-3	-3	-3
приемника, дБм			

- а. Кабель [50/125 нм, 400 МГц*км] или кабель [62,5/125 нм, 500 МГц*км]
- b. Кабель [62,5/125 нм, 750 МГц*км]
- с. Кабель [9/125 нм]

Оптоволокно— передача по одной жиле

	10A	10B	20A	20B	40A	40B
Длина волны, нм	TX:	TX:	TX:	TX:	TX:	TX:
	1310	1550	1310	1550	1310	1550
	RX:	RX:	RX:	RX:	RX:	RX:

	1550	1310	1550	1310	1550	1310	
Мощность	-9	-9	-8	-8	-3	-3	
передатчика,							
дБм							
Чувствительность	-21	-21	-23	-23	-23	-23	
приемника, дБм							
Допустимые	12	12	15	15	20	20	
потери в канале							
связи, дБм							
Дальность	10 km	10 км	20 км	20 km	40 km	40	
передачи						км	
Насыщение	-1	-1	-1	-1	-1	-1	
приемника, дБм							
а. Кабель [50/125, 400МГц*км]			d. Кабе	d. Кабель [62,5/125, 500МГц*км]			
b. Кабель [62,5/125, 200МГц*км]			е. Кабе	e. Кабель [9/125, 3,5 PS (нм*км)]			
с. Кабель [50/125, 800МГц*км]			f. Кабе	f. Кабель [9/125, 19 PS (нм*км)]			

Поддержка МОХА в Интернет

Наша первоочередная задача – удовлетворение пожеланий заказчика. С этой целью была создана служба MOXA Internet Services для организации технической поддержки, распространения информации о новых продуктах, предоставления обновленных драйверов и редакций руководств пользователя.

Для получения технической поддержки пишите на наш адрес электронной почты: $\underline{support@moxa.ru}$

Для получения информации об изделиях обращайтесь на сайт: http://www.moxa.ru